CBCS SCHEME

USN

Seventh Semester B.E. Degree Examination, Feb./Mar. 2022 **Control Engineering**

Max. Marks: 100 Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Explain closed loop system with an example.

(06 Marks)

18ME71

What are the ideal requirements of a control system? Explain them briefly.

(06 Marks)

Explain proportional plus integral plus derivative control action with the characteristics.

(08 Marks)

OR

Draw the equivalent mechanical system of the given system shown in Fig.Q2(a). Hence the 2 set of equilibrium equations for it and obtain electrical analogous circuits using (i) F-V analogy (ii) F-I analogy.

Fig.Q2(a)

b. A thermometer is dipped in a vessel containing liquid at a constant temperature of $\theta_i(t)$. The thermometer has a thermal capacitance for storing heat as 'C' and thermal resistance to limit heat flow as R. If the temperature indicated by the thermometer is $\theta_0(t)$. Obtain the transfer function of the system.

Module-2

Obtain an expression for response of first order system for unit step input. 3 a.

(06 Marks)

Explain different types of input signals. b.

(06 Marks)

Obtain an expression for response of first order system for parabolic input. C.

(08 Marks)

OR

- Derive the expression of steady state error for a simple closed loop system and state the a. factors on which it depends.
 - A second order system has natural frequency $\omega_n = 5$ rad/sec and damping ratio is 0.6. Calculate (i) Delay time (ii) Rise time (iii) Peak time (iv) Maximum overshoot.

Module-3

Reduce the given block diagram shown in Fig.Q5(a) and obtain the transfer function a. 5 C(s)/R(s).

(10 Marks)

(10 Marks)

(20 Marks)

(06 Marks)

b. Find the overall transfer function by using Mason's gain formula for the signal flow graph shown in the Fig.Q5(b).

Draw the corresponding signal flow graph of a given block diagram in Fig.Q6(a) and obtain

 $\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 10y = 8u(t)$ b. A system is governed by the differential equation

where y is the output and u is the input of the system. Obtain a state space representation of the system.

Module-4

The characteristic equation of a system is given by $s^6 + 3s^5 + 4s^4 + 6s^3 + 5s^2 + 3s + 2 = 0$

b. By applying Routh criterion, discuss the stability of the closed loop system as a function of K for the following open loop transfer function $G(s)H(s) = \frac{K(s+1)}{s(s-1)(s^2+4s+16)}$

Sketch the rough nature of root locus of a given transfer function 8

a. Sketch the polar plot of given transfer function

G(s)H(s) =
$$\frac{1}{s(1+5s)(1+10s)}$$

The transfer function G(s)H(s) =s(s+1)(s+2)

Sketch the rough nature of Nyquist plot and comment on stability. (14 Marks)

Draw the Bode plot for the transfer function 10

G(s) =
$$\frac{36(1+0.2s)}{s^2(1+0.05s)(1+0.01s)}$$

From Bode plot determine:

- (i) Phase crossover frequency
- (iii) Gain margin

- (ii) Gain crossover frequency
- (20 Marks) (iv) Phase margin * * 2 of 2 * *